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Abstract 

 
In modern warfare, missiles play a pivotal role but typically spend the majority of their 
lifecycle in long-term storage or standby mode, making it difficult to detect failures. 
Preemptive detection of missiles that will fail is crucial to preventing severe consequences, 
including safety hazards and mission failures. This study proposes a contamination-based 
stacking ensemble model, employing the local outlier factor (LOF), to detect such missiles. 
The proposed model creates multiple base LOF models with different contamination values 
and combines their anomaly scores to achieve a robust anomaly detection. A comparative 
performance analysis was conducted between the proposed model and the traditional single 
LOF model, using production-related inspection data from missiles deployed in the military. 
The experimental results showed that, with the contamination parameter set to 0.1, the 
proposed model exhibited an increase of approximately 22 percentage points in accuracy and 
71 percentage points in F1-score compared to the single LOF model. This approach enables 
the preemptive identification of potential failures, undetectable through traditional statistical 
quality control methods. Consequently, it contributes to lower missile failure rates in real 
battlefield scenarios, leading to significant time and cost savings in the military industry. 
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1. Introduction 

Missiles are precision weapons capable of rapidly and accurately attacking selected targets 
at a distance. This capability enables the effective execution of a wide range of military tasks, 
from disrupting enemy communications and supply routes to achieving air superiority and 
defense. Owing to this versatility, missiles play a pivotal role in modern warfare, being 
extensively employed for precision target engagements and strategic and tactical objectives on 
a global scale. With the increasing significance of missiles, the technology behind them, 
including various guidance systems like lasers, global positioning system (GPS), and infrared, 
has also evolved [1]. The integration and advancement of technology have made missile 
structures increasingly complex, with concentrated integration of mechanical and electronic 
components, raising the risk of various types of failures. However, missiles, which typically 
come with a 10-year warranty period, have long storage periods and are one-shot devices, 
making it difficult to detect failures [2]. Consequently, missile failures or malfunctions can 
lead to severe consequences such as safety hazards and mission failures, underscoring the need 
for high-reliability and safety assurance through failure prevention strategies. 

Methods to prevent missile failures can be broadly categorized into macro-level and micro-
level approaches. Macro-level approaches involve maintenance based on the condition of the 
missile, while micro-level approaches involve identification potential failures of missiles at 
the production phase. Studies of macro-level approaches include the development of condition 
monitoring systems to evaluate and enhance the reliability of missiles stored and exposed in 
the field [3], and reliability prediction using condition monitoring data [4]. Furthermore, with 
advancements in computational techniques, studies utilizing machine learning algorithms have 
been conducted, including missile lifespan prediction [5], failure characteristics and anomaly 
analysis of liquid rocket engine components [6-9], fault detection and diagnosis in solid rocket 
motors [10], and anomaly detection methods using flight data [11]. 

While study on maintenance based on the condition of missiles is actively pursued, there is 
a notable lack of studies identifying potential failures at the missile production phase. 
Particularly, over the past few years, almost no innovative models regarding quality, including 
potential failure identification at the production phase, have been proposed [12]. Identifying 
potential failures, specifically missile that will fail, at the production phase is crucial for 
equipment support capabilities and assessing combat mission performance. Moreover, 
identifying potential failures early can lead to design modifications or quality improvements, 
reducing additional costs that may arise and preventing system failures and safety incidents 
that may occur over time [13,14]. In response to these challenges, this study statistically 
examines quality inspection management (QIM) data acquired from the missile production 
phase and proposes a new methodology for detecting missiles that will fail based on the 
statistical analysis of this data. Missiles are classified according to solid and liquid fuels, and 
the proposed model's efficacy is evaluated using real data from the production phase of solid-
fuel missiles. Although this study focuses on solid-fuel missiles, the proposed model is 
applicable to both solid and liquid fuel missiles. 

The rest of the paper is organized as follows. In Section 2, an overview of missile 
components and functions is provided, and missile quality inspection management (QIM) is 
explained. This section also includes a literature review on cases of identifying potential 
failures within various industries. In Section 3, the distribution and deviation of the QIM data 
are statistically analyzed, and a novel methodology for detecting missiles that will fail is 
proposed. In Section 4, the proposed methodology's performance is evaluated experimentally. 
Finally, in Section 5, the conclusions and potential for future studies are presented. 
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2. Related Works 

2.1 Missile Components and Functions 
Missiles are self-propelled guided weapon systems that traverse through air or space, and are 
complex assemblies of interacting subsystems [15,16]. While missile configurations vary by 
type, they generally comprise components such as the guidance section, warhead section, 
sustainer/booster section, and control section, as illustrated by the cross-section diagram in 
Fig. 1 [17]. These sections collectively enable the missile to accurately detect, track, and 
destroy its target. 
 

 
Fig. 1.  The Missile Cross-Section Diagram. 

 
The guidance section consists of complex electronic devices that enable the missile to 

accurately detect and track its target. It includes various sensors, computers, and algorithms to 
adjust the missile's flight path in real-time. The warhead section, which detonates upon 
reaching the target to achieve a destructive effect, can come in various forms such as high 
explosives, nuclear weapons, and chemical or biological warheads, with the choice depending 
on the missile's purpose and target. The sustainer/booster section contains rocket or jet engines 
that provide the necessary propulsion to carry the missile to the target, converting the chemical 
energy of the fuel into kinetic energy to accelerate the missile. The control section manages 
the missile's flight path and stability, including wings, rudders, and other control surfaces to 
adjust direction and altitude, ensuring the missile follows its designated path to accurately 
reach its target. 

When classifying missile components based on their characteristics, they can be divided 
into mechanical items such as actuators and wings, electrical/electronic items like printed 
circuit board assemblies, and chemical items that include warheads and propulsion systems. 
A summary of the functions of missile components by category is presented in Table 1. 
 

Table 1. Key Functions of the Missile by Characteristics 
Category Key Function 

Electrical/Electronic Signal processing/transmission, power conversion/distribution 
Mechanical Component protection, attitude/position control 
Chemical Power supply, detonation and explosion 

2.2 Missile Quality Inspection Management 
It is difficult to look at any single test result used to verify the quality of a product or system 
and know whether that number or result is accurate and reliable [18]. Therefore, there is a need 
for statistical quality control (SQC) to ascertain the statistical significance of test outcomes. 
SQC is a critical method for maintaining and enhancing quality in manufacturing and 
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production processes. SQC is based on the assumption that the quality characteristics of 
interest in a product or process follow a normal distribution or a distribution similar to normal. 
It focuses on managing these characteristics. Methods to control the mean and variance within 
a specified range are employed to manage quality characteristics. QIM of missiles is an SQC 
activity conducting tests on produced missiles and managing deviations in products and 
processes based on test data, with the aim of minimizing these deviations. Ultimately, this 
QIM enhances missile quality. 

2.3 Cases of Potential Failure Identification 
In industries other than the missile field, studies are underway to identify potential failures at 
the production phase. Generally, traditional SQC is employed to detect potential failures and 
defects during production, but it often relies on univariate analysis, making it difficult to detect 
the interactions between factors affecting quality. Therefore, data-driven approaches are being 
actively studied because potential failures and defects that could not be detected through 
traditional SQC alone can be detected, and various studies are being conducted using machine 
learning and deep learning techniques. 

Machine learning, a key component of data-driven approaches, has been increasingly 
adopted in recent study to identify potential failures at production phase. Susto et al. [19] 
compared various machine learning approaches for detecting anomalies or changes in the etch 
rate, a quality metric used during wafer etching in semiconductor manufacturing processes. 
The analysis results showed that local outlier factor (LOF) exhibited high performance in 
terms of precision, while angle-based outlier detection (ABOD) demonstrated excellent recall 
performance. Furthermore, the study of data-driven approaches for defect detection within 
semiconductor processes is actively being pursued [20-22]. Ko et al. [23] integrated 
manufacturing and inspection data with after-sales data, and then assessed product quality 
during the process using machine learning algorithms. To address the issue of class imbalance, 
a single-class classification algorithm was employed in conjunction with a machine learning-
based anomaly detection model to calculate anomaly scores for each engine. Consequently, 
the approach enabled successful detection of defective engines with high probability before 
shipment. Kharitonov et al. [24] conducted an evaluation of ten machine learning models for 
the detection of anomalies in the manufacturing field, including unsupervised learning 
methods such as k-nearest neighbors (KNN), Autoencoder, LOF, and COPOD. These methods 
do not require prior knowledge of abnormal patterns but rely on understanding the 
characteristics and structure of the data. However, the limited applicability of these 
unsupervised learning approaches was also highlighted due to their heavy dependence on the 
shape or distribution of data. Alimohammadi et al. [25] employed classifier-based, angle-based, 
and proximity-based machine learning techniques for the detection of anomalies in gas 
production time-series data, with methods such as KNN, DBSCAN, and ABOD demonstrating 
excellent performance. Alelaumi et al. [26] utilized a sliding window to extract features for 
the detection of in-process anomalies in order to prevent print defects and reduce high rework 
costs in the manufacturing process, and patterns were detected using an AdaBoost model. 

Deep learning, another pillar of data-driven methodologies, is also gaining traction in 
identifying potential failures at production phase. Liu et al. [27] developed a structured neural 
network by combining an event ordering relationship-based structuring technique and deep 
neural networks to detect anomalies in the manufacturing process using process data collected 
from 151 sensors. Through the event ordering relationship-based neural network structuring 
process, which involves determining important neuron connections and weight initialization 
before neural network training, the reduction in the complexity of the neural network led to an 
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improvement in anomaly detection accuracy. The structured neural network demonstrated 
higher performance compared to widely used methods. Gao et al. [28] recognized that features 
extracted using AI methods may have limited discriminative power in anomaly detection due 
to slight variations in operational parameters. To address this issue and tackle the problem of 
imbalanced data, an integrated approach was developed that combines statistical feature 
extraction with unsupervised deep learning. Jakubowski et al. [29] aimed to identify the causes 
of anomalies and validate their findings using the SHAP method, which provides both local 
and global explanations. This method was applied to actual data collected during the hot rolling 
industrial process, utilizing a modified autoencoder architecture with long short-term memory 
layers. 

In industries other than the missile field, data-driven approaches to identifying potential 
failures at the production phase are being actively studied, targeting improvements in yield, 
time savings, and cost reduction. Such studies encompass model performance evaluation, data 
preprocessing, and training methodologies. Given the outcomes of studies in these industries, 
it is crucial to conduct similar studies that can ensure a high level of reliability and safety by 
preventing failures within the missile field. 

3. Proposed Methodology 
The objective of this study is to detect missiles that will fail at the production phase in order 
to enhance missile reliability. In this section, the characteristics of the produced missiles are 
examined using statistical data analysis, and a model is proposed for detecting missiles that 
will fail based on this analysis. 

3.1 Data Analysis 

3.1.1 Dataset 

Utilizing the QIM data of ○○ missiles, which were produced over a continuous period of 
approximately seven years and subsequently deployed in the military, the objective is to 
differentiate between normal missiles and those that will fail. The ○○ missile is a solid-fuel 
missile, and the QIM data comprises test results for various inspection items conducted on the 
missile immediately after production. This dataset encompasses 444 inspection items, 
including metrics such as connection resistance, detection performance, and squib-related tests, 
and is based on measurements from a total of 138 missiles. Due to security considerations, 
inspection item names are labeled as x1, x2, etc., and neither the measurement units nor the 
pass criteria are disclosed. 

All missiles were found to be within the quality control limits based on measurements from 
post-production inspections and were thus successfully deployed in the military. After this 
deployment, annual sample inspections are conducted for each missile, enabling assessments 
of both operational status and failures across all inspection items to be made. From the sample 
inspection, failures were observed in 9 out of 138 missiles. All these failures were identified 
as simultaneous malfunctions of both the seeker and the inertial measurement unit (IMU), with 
no other failures detected. The seeker is responsible for target detection, the IMU is designed 
to sense the missile's movement. The malfunction in these components can cause the missile 
to deviate from its intended path, potentially leading to military operation failures or additional 
unintended damages. 
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To ascertain if any process issues were related to these failures, the normality of the 
inspection items in the QIM data was analyzed, and the histograms of both the normal missiles 
and those that will fail were compared. The results are visualized in Fig. 2. After the Anderson-
Darling normality test was performed for all inspection items, all were found to satisfy 
normality at a significance level of 0.05. 
 

 
Fig. 2.  Histogram Comparison of QIM Data between Normal Missiles and Those that Will Fail. 

3.1.2 Failure Classification 
When visualized as histograms using the QIM data, a broader deviation was exhibited by 
missiles that will fail compared to normal missiles. Upon conducting Bartlett's test, which is 
used to test if k samples have equal variances, for variances between normal missiles and those 
that will fail, significant differences in variances were observed in 312 out of 444 inspection 
items at a significance level of 0.05. Notably, for these 312 items, the missiles that will fail 
exhibited greater deviations than the normal missiles. This suggests that for inspection items, 
the measurement values for normal missiles tend to cluster closer to the mean, with density 
decreasing as values deviate from the mean. In Fig. 3, the approximate probability density 
functions of occurrences for both the normal missiles and those that will fail are illustrated, 
denoting the differences in their densities. 
 

 
Fig. 3.  Approximate Probability Density Function between Normal Missiles and Those that Will Fail 
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As the measurement values for the inspection items deviate further from the mean, the 
likelihood of missile failure is increased. It is inferred that missiles with a greater number of 
inspection items deviating significantly from the mean are more susceptible to failure. 
Therefore, missiles that will fail are identified based on the count of inspection items that fall 
outside a specific deviation range. Relying solely on accuracy to set the optimal classification 
criterion might result in imprecise outcomes due to the disparity in numbers between normal 
missiles and those that will fail. Given that the number of missiles that will fail is significantly 
lower than normal missiles, relying solely on accuracy to set the optimal classification criterion 
can result in most predictions being categorized as normal missiles, thereby achieving high 
accuracy but inadequately predicting missile that will fail. The F1-score, a metric representing 
the harmonic mean of Precision and Recall, mitigates this issue. Precision is the ratio of 
correctly predicted positive observations to all predicted positives, assessing the accuracy of 
positive predictions. Recall is the ratio of correctly predicted positive observations to all actual 
positives, evaluating the model's ability to identify all relevant cases. This metric is particularly 
effective in evaluating the predictive performance of failure-prone missiles in imbalanced 
datasets. Consequently, the F1-score is utilized to assess and establish the optimal 
classification criterion. When the criterion for deviation is defined as k and the criterion for 
the count of inspection items surpassing k as T, the optimal criterion (k*, T*) yielding the 
highest F1-score can be deduced through (1)-(5). 
 

 𝑥̅𝑥𝑚𝑚 =
1

138
� 𝑥𝑥𝑚𝑚𝑚𝑚

138

𝑖𝑖=1
 (1) 

 𝑠𝑠𝑚𝑚 = �
1

137
� (𝑥𝑥𝑚𝑚𝑚𝑚 − 𝑥̅𝑥𝑚𝑚)2

138

𝑖𝑖=1
 (2) 

 𝐶𝐶𝑚𝑚𝑚𝑚 = 𝐼𝐼�𝑥𝑥𝑚𝑚𝑚𝑚 < 𝑥̅𝑥𝑚𝑚 − 𝑘𝑘𝑠𝑠𝑚𝑚 𝑜𝑜𝑜𝑜 𝑥𝑥𝑚𝑚𝑚𝑚 > 𝑥̅𝑥𝑚𝑚 + 𝑘𝑘𝑠𝑠𝑚𝑚� (3) 

 𝐶𝐶𝑗𝑗 = � 𝐶𝐶𝑚𝑚𝑚𝑚

444

𝑚𝑚=1
 (4) 
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The term 𝑥𝑥𝑚𝑚𝑚𝑚  represents the measurement value of the m-th inspection item for the i-th 

missile. 𝑥̅𝑥𝑚𝑚  and 𝑠𝑠𝑚𝑚  denote the mean and standard deviation of the m-th inspection item 
measurement value, respectively. I is an indicator function, and 𝐶𝐶𝑚𝑚𝑚𝑚 is an indicator showing 
whether the measurement value of the m-th inspection item for the j-th missile deviates from 
the deviation criterion. 𝐶𝐶𝑗𝑗  represents the number of inspection items that deviate from the 
deviation criterion for the j-th missile. If the number of inspection items that surpass the 
deviation criterion exceeds the criterion T, the respective missile is classified to be faulty. F1(k, 
T) calculates the F1-score for a given combination of k and T. Through this process, the optimal 
criterion for ○○ missiles were derived with k* being 1.02 and T* being 76. The confusion 
matrix for this criterion is presented in Table 2, and the classification performance is 
summarized in Table 3. 
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Table 2. Confusion Matrix for the Optimal Criterion 
 Predicted Class 

Normal Abnormal 
Actual 
Class 

Normal 125 4 
Abnormal 4 5 

 
Table 3. Classification Performance for the Optimal Criterion 

Accuracy F1-Score Precision Recall 
0.9420 0.5556 0.5556 0.5556 

 
While the accuracy was notably high at approximately 94%, the F1-score displayed a lower 

performance at around 56%. This is attributed to the rare occurrences of failures from missiles 
and the problem of using the same deviation standard across all inspection items, disregarding 
their unique characteristics. To address this challenge, this study employs the local outlier 
factor (LOF) from unsupervised learning models. LOF considers the density of local sets and 
the degree to which objects are isolated from their neighbors. 

3.2 Local Outlier Factor 

3.2.1 Dataset and Preprocessing 

Out of the 138 ○○ missiles, 9 have been confirmed to have failed. The QIM data for the 

○○ missile is partitioned into training and testing datasets at an 8:2 ratio, yielding 110 data 
points for training and 28 for testing. The proposed model is an unsupervised anomaly 
detection model that trains exclusively on normal missile data. Therefore, the training dataset 
consists solely of normal missile data, while the test dataset includes all data related to missiles 
that will fail. 

In the QIM data for the ○○ missile, various inspection items result in a diversity of 
measurement ranges and units. To address this inconsistency, min-max normalization should 
be applied. The normalization equation is given in (6). 
 

 𝑥𝑥𝑚𝑚𝑚𝑚
∗ =

𝑥𝑥𝑚𝑚𝑚𝑚 −min (𝑥𝑥𝑚𝑚)
max(𝑥𝑥𝑚𝑚)− min (𝑥𝑥𝑚𝑚)

 (6) 

3.2.2 Anomaly Detection 
LOF addresses the challenge in traditional density-based methods where defining a density 
threshold is difficult due to clusters having varying densities. In the LOF framework, a pivotal 
metric, k-distance(p), is introduced. This metric represents the distance to the k-th nearest 
neighbor of a specific data point, p. It is possible for multiple data points to have the same k-
distance(p). Hence, all points within this distance, excluding p itself, are designated as Nk(p). 
For another data point, o, and its k-distance(o), the concept of reachability distance between p 
and o is introduced. This distance, termed reachability-distance(p, o), is defined in (7). 
 
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑜𝑜) = max�𝑘𝑘 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜),𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑜𝑜)� (7) 
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Using the local reachability distance, reachability-distance(p, o), the local reachability 
density, lrd(p), is defined as per (8). Taking into account the local densities and the inverse 
relationship between distance and density, it is calculated as the inverse of the distance. 
 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) = �
∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑘𝑘(𝑝𝑝, 𝑜𝑜)𝑜𝑜∈𝑁𝑁𝑘𝑘(𝑝𝑝)

𝑁𝑁𝑘𝑘(𝑝𝑝) �
−1

 (8) 

 
For the data point p, its local reachability density, lrd(p), and the ratio of points belonging 

to Nk(p) are considered to evaluate the density. For this purpose, the lof(p) is defined, as in (9), 
by comparing the average distance between p and its neighbors to the average distance among 
the neighbors in Nk(p). 
 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) =
∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑜𝑜)

𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝)𝑜𝑜∈𝑁𝑁𝑘𝑘(𝑝𝑝)

𝑁𝑁𝑘𝑘(𝑝𝑝)  (9) 

 
In instances where surrounding points around a specific point do not exhibit significant 

differences, the lof(p) value is approximated to 1. Conversely, for points that deviate 
significantly from the average distance, the lof(p) value exceeding 1 is observed. Through this 
model, the detection of missiles that will fail based on QIM data is attempted. In this study, all 
parameters of the LOF model were adopted as initially proposed by Breunig et al. [30]. The 
results of the detection using this model are presented in Table 4. 
 

Table 4. Anomaly Detection Performance Using the LOF Model 
Accuracy F1-Score Precision Recall 

0.7314 0.1990 0.5359 0.1333 
 

A decrease in overall performance was observed when relying solely on the LOF model 
compared to the deviation criterion-based classification method. This decline might be 
attributed to the high-dimensional nature of the QIM data, which consists of 444 inspection 
items. In high-dimensional data, the curse of dimensionality can occur. In such cases, data 
points are likely to be more widely dispersed, making density estimation difficult and leading 
to challenges for density-based anomaly detection models like LOF. To overcome these 
challenges and improve performance in this study, a contamination-based stacking ensemble 
model is proposed, which stacks various LOF models with different contamination values. 

3.3 Contamination-Based Stacking Ensemble 
This study proposes a contamination-based stacking ensemble model for detecting missiles 
that will fail. This model leverages the LOF, a renowned anomaly detection technique, and 
conducts its analysis using QIM data, which is normalized prior to training on individual sub-
LOF models. The anomaly scores from these sub-models are subsequently combined through 
a stacking ensemble. The proposed model carries out unsupervised anomaly detection, 
utilizing inspection results obtained during the production of missiles that are deployed in 
military. The anomaly detection framework for this study is depicted in Fig. 4. 
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Fig. 4.  The Overall Framework of the Anomaly Detection 

 
The dataset and data preprocessing used for this model are consistent with those described 

in Section 2.2.1. The proposed model generates multiple sub-LOF models, each with a unique 
contamination value, from the single anomaly detection model LOF. In LOF models, when a 
point does not significantly differ from its neighboring points, the LOF value approximates to 
1, while it exceeds 1 for points significantly different from the mean distance. Determining the 
threshold for considering how much greater than 1 the value should be to classify a point as 
an outlier is a challenging task, and various studies have been conducted on this matter [31]. 
In Python's Scikit-learn library, this threshold is set through the contamination parameter. A 
lower contamination value indicates fewer outliers, resulting in a higher threshold, while a 
higher contamination value implies a lower threshold. The anomaly score of the data also 
varies with different contamination values. This study proposes a contamination-based 
stacking ensemble model that accumulates anomaly scores produced differently according to 
this parameter and employs them for anomaly detection. Except for contamination, the other 
parameter settings follow the original configuration of the LOF model as proposed by Breunig 
et al. [30]. 

In this study, the training data involves individually training sub-LOF models generated 
based on different contamination values and stacking the estimated anomaly scores to create 
training stacking data. Training and estimation are conducted through k-fold cross-validation, 
preventing overfitting for each sub-model and generating a larger amount of stacking data. 
The test data is applied to the sub-models trained through previous k-fold cross-validation, 
resulting in k duplicate anomaly scores for each model. The estimated anomaly scores 
represent the average per missile, and by stacking the average anomaly scores, testing stacking 
data is generated. Utilizing the generated training stacking data and testing stacking data, 
anomaly detection is performed through a single LOF model. The architecture of the proposed 
model is illustrated in Fig. 5. 
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Fig. 5.  The Architecture of the Contamination-Based Stacking Ensemble Model 

 
In Fig. 5, N represents the number of unique contamination values, k denotes the value of k 

in k-fold cross-validation, sub-models refer to the base learners, and the final model represents 
the meta-learner. Here, the contamination values are calculated as shown in (10), and ci 
signifies the contamination value of the i-th sub-model. 
 

 𝑐𝑐𝑖𝑖 =
𝑖𝑖

2𝑁𝑁
  (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁) (10) 

 
The model proposed in this study generates base learners with a variety of contamination 

values, stacks each base learner's anomaly scores, and the data thus stacked is used for anomaly 
detection through a single meta-learner. This model detects missiles that will fail during the 
production phase using an unsupervised learning-based approach. While the traditional LOF 
model may be limited when applied to high-dimensional data due to its susceptibility to data 
dimensionality, the proposed model integrates models with various thresholds, ranging from 
lenient to strict, to overcome issues arising in high-dimensional data. This integration results 
in a more stable and robust performance compared to the traditional LOF model. As a result, 
this model significantly enhances the performance of detecting missiles that will fail compared 
to applying the LOF model independently. 

4. Experimental Evaluation 
The performance and training time of the contamination-based stacking ensemble model for 
anomaly detection are evaluated in this section. Given the imbalance between the number of 
normal missiles and those that will fail, the F1-score has been selected as the evaluation metric 
to account for the recall and sensitivity. The proposed model's performance is assessed based 
on both accuracy and the F1-score, to ensure a comprehensive evaluation. 
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Fig. 6 displays the average accuracy, F1-score, recall, and sensitivity obtained through a k-
fold cross validation with k=5, comparing the traditional LOF model to the one with varying 
numbers of base learners, n. In subfigure (a), the x-axis represents the contamination value, 
and the y-axis illustrates the respective performance metrics. For subfigures (b) through (g), 
the x-axis shows the contamination values of the meta learner, while the y-axis illustrates the 
respective performance metrics. 

 

 
Fig. 6.  Performance of the LOF Model and the Proposed Model with Varying Base Learner Counts 
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The proposed model shows performance improvement up to n=100, but beyond that point, 
there's only a minimal gain in performance while the learning time increases significantly. The 
highest average performance of the proposed model was observed at contamination parameter 
of 0.1, and the average accuracy, F1-score, and average learning time at contamination 
parameter of 0.1 are summarized in Table 5. 
 

Table 5. Performance Evaluation of Models with a Contamination Parameter of 0.1 
Index Accuracy (%) F1-Score (%) Train Time (sec) 

LOF Only 73.14 19.31 0.4 

Contamination-Based 
Stacking Ensemble 

Model  
(Proposed) 

n=1 71.43 21.56 0.7 
n=10 74.29 37.58 4.4 
n=50 85.14 69.37 21.3 

n=100 94.86 91.04 41.7 
n=500 95.43 91.87 206.3 
n=1000 95.43 91.87 411.9 

 
At the contamination parameter of 0.1, the proposed model showed an approximate increase 

of 22 percentage points in accuracy and 71 percentage points in the F1-score compared to the 
traditional LOF model. This indicates the capability of the proposed model to detect missiles 
that will fail with a high performance. 

5. Conclusion 
Missiles are considered crucial weaponry in modern warfare, but due to their disposable and 
long-term storage characteristics, identifying faults can be challenging. To address these 
challenges, unlike previous studies, which focused solely on maintenance based on the 
condition of missiles, this study preemptively detected missiles that will fail. Specifically, the 
study focused on analyzing QIM data of missiles and, through the analysis results, identified 
distribution and density differences between normal missiles and those that will fail. Based on 
these findings, a new model for detecting missiles that will fail during the production phase 
was proposed. 

This study utilized QIM data from missiles deployed in military and proposed a 
contamination-based stacking ensemble model based on the LOF model. This model generates 
multiple sub-LOF models with different contamination values. By considering various 
thresholds, a comprehensive approach is enabled by the model, resulting in performance that 
is more stable and robust than that of a single LOF model. Its effectiveness was demonstrated 
through a comparison with a single LOF model. The proposed model holds promise for 
applications beyond missile failure prediction, extending to various industries for anomaly 
detection. Furthermore, it is expected that this study will significantly contribute to reducing 
missile failure rates in real battlefield scenarios. 

This study confirmed the capability to identify the specific missile failure preemptively. 
However, it relies on the quality and completeness of QIM data. Future studies will aim to 
address these limitations by exploring more adaptive and resilient modeling approaches. 
Additionally, future work will integrate these identification results with sensor data and 
operational missile information to obtain more accurate and diverse state information. 
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